Exercise 9.2.2

Find the general solutions of the PDEs in Exercises 9.2.1 to 9.2.4.

$$
\frac{\partial \psi}{\partial x}-2 \frac{\partial \psi}{\partial y}+x+y=0
$$

Solution

Since ψ is a function of two variables $\psi=\psi(x, y)$, its differential is defined as

$$
d \psi=\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y
$$

Dividing both sides by $d x$, we obtain the relationship between the total derivative of ψ and the partial derivatives of ψ.

$$
\frac{d \psi}{d x}=\frac{\partial \psi}{\partial x}+\frac{d y}{d x} \frac{\partial \psi}{\partial y}
$$

In light of this, the PDE reduces to the ODE,

$$
\begin{equation*}
\frac{d \psi}{d x}+x+y=0 \tag{1}
\end{equation*}
$$

along the characteristic curves in the $x y$-plane that satisfy

$$
\begin{equation*}
\frac{d y}{d x}=-2, \quad y(0, \xi)=\xi \tag{2}
\end{equation*}
$$

where ξ is a characteristic coordinate. Integrate both sides of equation (2) with respect to x to solve for $y(x, \xi)$.

$$
y(x, \xi)=-2 x+\xi
$$

As a result, equation (1) becomes

$$
\frac{d \psi}{d x}+x+(-2 x+\xi)=0 \quad \rightarrow \quad \frac{d \psi}{d x}=x-\xi
$$

Solve this ODE by integrating both sides with respect to x.

$$
\psi(x, \xi)=\frac{x^{2}}{2}-\xi x+f(\xi)
$$

Here f is an arbitrary function of the characteristic coordinate ξ. Now eliminate ξ in favor of x and $y: \xi=2 x+y$.

$$
\begin{aligned}
\psi(x, y) & =\frac{x^{2}}{2}-x(2 x+y)+f(2 x+y) \\
& =\frac{x^{2}}{2}-2 x^{2}-x y+f(2 x+y)
\end{aligned}
$$

Therefore,

$$
\psi(x, y)=-\frac{3}{2} x^{2}-x y+f(2 x+y)
$$

